在一个由 '0''1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。

示例 1:

img
img
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4

示例 2:

img
img
输入:matrix = [["0","1"],["1","0"]]
输出:1

示例 3:

输入:matrix = [["0"]]
输出:0

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 300
  • matrix[i][j]'0''1'

思路

本题也是动态规划的题,重点在于找到转台转移方程。

表示第行第列包含的最大正方形边长,稍加观察即发现其满足下列方程: 我们只需设置好边界条件,然后填充dp数组即可。

class Solution {
public int maximalSquare(char[][] matrix) {
// dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
int m = matrix.length;
int n = matrix[0].length;
int[][] dp = new int[m][n];
int ans = 0;
for (int i = 0; i < m; i++) {
dp[i][0] = matrix[i][0] == '0' ? 0 : 1;
ans = Math.max(ans, dp[i][0]);
}
for (int i = 0; i < n; i++) {
dp[0][i] = matrix[0][i] == '0' ? 0 : 1;
ans = Math.max(ans, dp[0][i]);
}


// 填充dp数组
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (matrix[i][j] == '0') dp[i][j] = 0;
else dp[i][j] = Math.min(dp[i-1][j], Math.min(dp[i][j-1], dp[i-1][j-1])) + 1;
ans = Math.max(ans, dp[i][j]);
}
}
return ans * ans;
}
}

复杂度

  • 时间复杂度:
  • 空间复杂度: