在一个由 '0'
和 '1'
组成的二维矩阵内,找到只包含 '1'
的最大正方形,并返回其面积。
示例 1:
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]] 输出:4
|
示例 2:
输入:matrix = [["0","1"],["1","0"]] 输出:1
|
示例 3:
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j]
为 '0'
或 '1'
思路
本题也是动态规划的题,重点在于找到转台转移方程。
设表示第行第列包含的最大正方形边长,稍加观察即发现其满足下列方程: 我们只需设置好边界条件,然后填充dp
数组即可。
class Solution { public int maximalSquare(char[][] matrix) { int m = matrix.length; int n = matrix[0].length; int[][] dp = new int[m][n]; int ans = 0; for (int i = 0; i < m; i++) { dp[i][0] = matrix[i][0] == '0' ? 0 : 1; ans = Math.max(ans, dp[i][0]); } for (int i = 0; i < n; i++) { dp[0][i] = matrix[0][i] == '0' ? 0 : 1; ans = Math.max(ans, dp[0][i]); }
for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { if (matrix[i][j] == '0') dp[i][j] = 0; else dp[i][j] = Math.min(dp[i-1][j], Math.min(dp[i][j-1], dp[i-1][j-1])) + 1; ans = Math.max(ans, dp[i][j]); } } return ans * ans; } }
|
复杂度