给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

示例 1:

输入:grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出:1

示例 2:

输入:grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出:3

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 300
  • grid[i][j] 的值为 '0''1'

思路

dfs搜索,每次遇到一个岛屿则将陆地全部变成海水,记录遇到的岛屿数即可。

class Solution {

public int[][] directions = { {1, 0}, {-1, 0}, {0, 1}, {0, -1} };

public char[][] grid = null;

int m = 0, n = 0;

public int numIslands(char[][] grid) {
this.grid = grid;
m = grid.length;
n = grid[0].length;
int ans = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == '1') {
ans++; dfs(i, j);
}
}
}
return ans;
}

void dfs(int x, int y) {
if (grid[x][y] == '0') return;
grid[x][y] = '0';
for (int d = 0; d < 4; d++) {
int newX = directions[d][0] + x;
int newY = directions[d][1] + y;

if (0 <= newX && newX < m && 0 <= newY && newY < n)
dfs(newX, newY);
}
}
}

复杂度

  • 时间复杂度:
  • 空间复杂度: