给你一个由 '1'
(陆地)和 '0'
(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ] 输出:1
|
示例 2:
输入:grid = [ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ] 输出:3
|
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j]
的值为 '0'
或 '1'
思路
dfs
搜索,每次遇到一个岛屿则将陆地全部变成海水,记录遇到的岛屿数即可。
class Solution {
public int[][] directions = { {1, 0}, {-1, 0}, {0, 1}, {0, -1} };
public char[][] grid = null;
int m = 0, n = 0;
public int numIslands(char[][] grid) { this.grid = grid; m = grid.length; n = grid[0].length; int ans = 0; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == '1') { ans++; dfs(i, j); } } } return ans; }
void dfs(int x, int y) { if (grid[x][y] == '0') return; grid[x][y] = '0'; for (int d = 0; d < 4; d++) { int newX = directions[d][0] + x; int newY = directions[d][1] + y;
if (0 <= newX && newX < m && 0 <= newY && newY < n) dfs(newX, newY); } } }
|
复杂度